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Calculations show that condition (4.5) holds for PM's which are stable to a first approxi- 
mation (the calculations are particularly simple if, as in /lo/, the motion of the body is 
described by using the canonically conjugate Anduaille variables). Consequently, these PM's 
are in fact orbitally stable. 

In accordance with Sect.4, for thefirstof these PM's there are just two families of 
asymptotic motions, while there are no motions asymptotic to the second PM. 
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THE PARTIAL STABILITY OF MOTION* 

V.I. VOROTNIKOV 

It is proved that the problem of stability (asymptotic stability) with 
respect to some of the variables, for a linear system with periodic 
analytic coefficients, is equivalent to the same problem with respect to 
all the variables, either for the same system or for an auxiliary linear 
system with periodic but not necessarily continuous coefficients, in less 
dimensions than the original system. A constructive procedure is described 
for constructing this auxiliary system, and the necessary and sufficient 
conditions are established for partial stability (asymptotic stability), 
generalizing the results of the Floquet-Lyapunov theory. 

It is shown that the class of non-linear systems for which the problem 
of partial stability is solvable by linear approximation may be enlarged 
if, instead of the linear part of the original {non-linear) system, one 
considers a specially constructed linear approximating system which is 
equivalent to a certain non-linear subsystem of the original system. 
Constructive procedures are described for constructing such auxiliary 
systems, and a theorem on partial stability is proved. Well-knowntheorems 
on stability in the Lyapunov-critical cases are extended. 

1. Formulation of the problem of the stability of a linear system with 
periodic coefficients. We consider a linear system of ordinary differential equations 
of perturbed motion: 



or, in Y, z variables 

The coefficients Aij, air, 6,1, Cjk, dj, are T-periodic analytic functicns of t 7 f0, cm). 
We shall consider the problem of stability (asymptotic stability) with respect to Y,,...~ 

y,,, /I, 2/ of the unperturbed motion y = 0, z =O of system (1.1). 

2. Auxiliary proposition. Let us express system (1.1) in vector form: 

) . = Ay + h, z’=Cy+Dz (x’=A*x) (3.1) 

where A*, A, B, C, D are matrix-valued functions of t *E IO, =) of appropriate dimensions, 
and consider the matrices 

G, = L,, Gz = {L,,L,), . b ** Gj = {Lx* . . ., Lj} (i = 3, l * . 7 p -k 1) 

whose elements are determined by the relationships 

L, z nl‘, . .) Lj = Li-1’ + DTLj_, (i = 2, . . ., p + 1) 

(Lj’ is the derivative of L, and T the symbol for transposition). All elements of the matrices 

Gi, Li (i = 1, . . ., p + 1) are T-periodic analytic functions of t -3 (0, -Q). 
The set of points t T': IO, 2’1, with the possible exception of a finite set of points M, 

will be denoted by IO, T]\,M. 

Lemma 1. 1) Each of the functions F, (t) = rank Gi (t) (i = 1,. ..,p+f), considered in the 

interval IO, TI\M, maintains a constant value N1 (1 .< Ni c< p; Ni = 0 if all elements of Gi 

vanish identically on IO, ‘fl), and for all t Z IO, Tl\ M the same system of !Vi column- 

vectors of the matrix Gi (i = 1,... , p 4- 1) is linearly independent. 
2) There exists a constant number s (we have in mind the smallest number 5, 2 (S :s.: p -i_ 1, 

withthisproperty) such that for all tc: 10, Tl\iM 

rank G._, == rank G. = N (1 ,,'N = const, -2 p) (2.2) 

Proof. 1) Consider the set hi==(F,j(li) of all possible square matrices obtained from 

Gi (4 by deleting columns and rows. The determinants lF,~(t)I are analytic functions and 
can vanish only on a finite set M of values 1 E 10, Tl, unless they vanish identically for all 

f E KA Tl /3/. By definition, the function p, (r) (i = 1, . . ., p :- 1) equals at eachpoint i cs [it, 
TI the maximum order k,(f) of a non-zero deterinant / Fjj /. Put ki* = max kf (t), t E [it. T]. Now, 

when all elements of Gi(/) vanish identicaily on icl, Tt. the statement of the lemma is obvious 

(in that case Fi ~0, t E [O, 17'1). so we may assume that 115 ki'<p. Thus, the set &i will contain 
a matrix I‘fj* of dimensions k,' \ kit such that 1 rij* 1 =f CJ for at least 0ne ti = l*i E 10, T1. 

But then, by the properties of analytic functions, 1 I.‘(]* 1 =+ 0 for all f et 10, Tl \ M. Therefore 
k, (t) = ki+ for all t E [Cl. TJ ‘\ .li. Put .I< -1 kiL; then I;: = ,Yi, 1 e ItI, Tl. By what we have proved, there 

exists i s fi* E [O, Tl such that the system of Si column-vectors of Gi (tl islinearlyindependent. 
The elements of these vectors form a square matrix of dimensions -'ii Y.V,. whose determinant 
does not vanish at *=ti* and hence at any TV [O,Tl\N. Thus, this system of _Vi cc;lumn- 
vectors is linearly independent for all f E/II. T]\x. This proves the first partofthe lemma. 

2) For all t E IO, T] there exists S- s(t) such that (2.2) holds. Let k -7 max s (1). f E Ii), 
Tl. Then, by the first part of the lemma, the number .V+ = rclnkGH(L+) (r+ is the value of t at 
which maxs(~)) is attained) remains constant for all fezlO, ~1.1 Af. Thus the equality rank G .-I z 
rankC; is true not only for t it+ but for all t E [O, ?‘I \ If. Putting s = k, we see that the 
proof is complete. 

Remark. The assumption about the possible existence of a finite number of exceptional 
points in [o, Tl is essential. This is clear, for example, even for the system y,'-= sinfz,+ 
zz, Zi' E :i (i ?z i 9) (‘-1 when r‘uik c, rnnk G, 2 for all t E [O, 2n] except t, --= X/2, (* = 3.7/z. whereas 
at the same time lallk G, + rallk G, at i = li (i ~2 1, 2). 
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3. Construction of the auxiliary system. Let s betheleast number such that 

(2.2) holds for all tr[O,T]\M. By Lemma 1, G,_, contains N columns which are linearly 

independent at t 5 IO, Tl\ M, say g, = [gi, (I), . . . ,gip(t)J, i = 1, . . .,N. 
To construct the auxiliary system, we introduce new variables 

pi = jil gij (t) Zj (i = I, . . .: .1’) 

Since (2.2) is true, it follows from the structure of the matrices Gi (i = 1, . . ., p + 1) 
that this transformation of variables,yields a linear system 

5' = 46, E = b/l, . . .T Ym, PI, . . *v PN), (3.2) 

Here Q is an (m i-N) X (m +N) matrix whose elements are functions continuous for all 

t E IO, Tl\M (and hence also for all 1~ [O, co)'\M*, where M* is a denumerable set), 
analytic in the intervals of continuity and T-periodic in TV IO, w). The discontinuities of 

the elements of Q are due to the possible failure of the vectors g,' to be linearly independent 

at a finite set of points in [O, Tl, and hence at a denumerable set of points M* in lo, m). 
Thus: 

Lemma 2. Given system (2.1), one can construct an auxiliary linear system (3.2) of 

dimensions m+ N, N =‘rank G,_, (t). 

4. The structure of the auxiliary system and its solutions. We define 

several new matrices: 1) R,(t) isthe Nxp matrix whose rows are the columns of G,_, 

that are linearly independent for TV [O, T]\M. 2) Ra(t) is the N X N matrix whose 

columns are the columns of RI that are linearly independent for tc 10, T]\M (we may assume 

that these are the columns numbered i,, . . ..iN in R,). 3) R,(t) isthe pXN matrix whose 

it -th row (i=i,...,N) is the j-th row of the matrix R,-1; all the other rows of R, 
vanish for all TV [O, TI (the elements of the matrix RI-' (t) r and hence also of R,,mayhave 

discontinuities at a finite number of points of 10, T]). Finally: 

Lezmna 3. The auxiliary linear system (3.2) may be written as 

E' =‘R, IA*Rb - R& (4.1) 

Proof. The transformation from system (2.1) to (3.2) is equivalent to a linear change 

of variables 

w=R(t)x; R+,# R*=Il;j 

where R, is an arbitrary (p-N) xp matrix whose elements are analytic T-periodic functions 

such that R is non-singular for t~[O,T]\M. With this notation, system (3.2) is made up of 

the first m+N equations of the system w'= R [A*R-'-R-'1~. Using the scheme for analysing 

the structure of matrices of type RAIR-1 described in /4/, one can showthatthe first m-l-N 

rows of this matrix, considered at all t E IO. Tl , satisfy the relation RA*R-'= RIA*Ra. In 

addition, a direct check shows that the first m+ N rows of the matrix RR'-', considered 
for all t ea [O, Tl , satisfy the equality RR'-'= R,Re. These relations imply that Eqs.(4.1) are 

indeed thoseofsystem (3.2), proving the lemma. 

In every interval 11 where the coefficients of system (3.2) are continuous (and there- 
fore analytic), the conditions of the existence and uniqueness theorem of /5/ hold. In each 

interval 11 therefore, there exists a unique solution F, = $t3.a) (t) of system (3.2) satisfying 
appropriate initial conditions in the interval and continuable to the entire interval If; in 

addition, these solutions are analytic functions of tf? It. Any sequence of such solutions 

(each sequence containing exactly one solution for each interval Z,) may be treated as a 
solution of system (3.2) for t E LO, m) in the sense that these solutions are defined for 
almost all t= [O,OC) (more precisely: for all tlz[o, ZW) with the exception of a denumerable 

setM*of points of discontinuity of the coefficients of system (3.2) in [O,co)) and satisfy 

system (3.2) for all tZ[O, =)\M*. To find these solutions, it suffices to determine a 
fundamental matrix G(t) of solutions of system (3.2) in the intervals It. 

Let us determine the matrix G in the intervals I,. By Floquet's Theorem /5-7/, and 

fundamental matrix of solutions of system (2.1) has the form X =@,e’L, where CD is 
analytic T-periodic matrix-valued function of dimensions n x n, such that 1 CD 1 # 0, t ,“;O, 

x)7 L is a constant matrix of the same dimensions. (The matrix-valued function .@L is a 

fundamental matrix of solutions of the system 11' = Lq. 'The roots pt (i = I,...,n) of the 

equation 1 L - pE, 1 = 0 are called the characteristic exponents of system (2.1)). Since 
system (3.2) is obtained from (2.1) by a linear change of variables (whose coefficients are 
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analytic T-periodic functions of t.? 10, x)) which is non-singular at t'z Ia, and system 
(3.2) has dimensions m i-N, it follows that any fundamental matrix of solutions of system 
(3.2) in It has the form G=Y&, where Y is an analytic T-periodic matrix-valued function 
of t, of dimensions (m + iV) X (m X iv), such that IY 1 #O, t Eli, K is a constant matrix of 
the same dimensions. The roots OJ(~ = I,..., m + N) of the equation 1 K -c&,,+~( = 0 are 
called the characteristic exponents of system (3.2). The set {ml,..., a,,,+~) is a subset of 
the set of characteristic exponents of system (2.1). 

Throughout the sequel, we shall assume without loss of generality that $ = 0 is not a 
point of discontinuity of the coefficients of system (3.2); then, since 

we conclude that 

G(0) = Y (0), G(T) = Y (T)erx, Y (0) = Y (T) 

K = [In G (2’) - In G (0)1/T (4.2) 

As it turns out, in the context of stability analysis with respect to yl,...,ym of the 
unperturbed motion y = 0,s = 0 of system (2.11, the above interpretation of a solution of 
system (3.2) for TV 10, 301 is unnecessarily broad. Indeed, the essential purpose of the 
auxiliary system (3.2) is to investigate the behaviour of the solutions pi (t) (i = 1, . . ., N) 
of system (2.1) defined by the variables (3.1). We are therefore interested in those solutions 
5 = E(3.8) (t) of system (3.2) which, at points t F= 10, a)\ M*, are also solutions Em.11 (t) = 
(Y* (t ) in the.rn~e~v~~; I; (t)$ . . ., PN @)I Of system (2.1). Since system (3.2) is obtained from (2.1) 

by a non-singular linear change of variables, the desired set of solutions 
of system (3.2) exists. Denote this set by E. Note that for all t, E [O,~)\hf* and "s 00) 
there is a uniquely defined solution &(~)FZ E. 

What we need to know from this point on is not the explicit form of the solutions ks.2) 
(t) F E but only the nature of their behaviour at points tE[O, CW)‘\M* (boundedness and 
convergence to zero as t-+ zu). To this end, we need a rigorous definition of Lyapunov- 
stability of a motion (solution) $ =o of system (3.2). (The solution 3 = 0 of system 
(3.2) is understood in the sense that for all tS[O,so)\M* it exists - since system (3.2) 
satisfies the conditions of the existence and uniqueness theorem - and satisfies the system 
for t E IO, c=)\M* ) . 

Definition 1. A motion g=o of system (3.2) is said to be Lyapunov-stable if, for 

any E, t, > 0 (t,,z [O, cc) \ M*) , there exists 6 (s, &I) > 0 such that, if IIg (t,)ll< 6, then 

II &32) (t: to7 5 W) II < E, Em (1) E E for all t E IO, co)\M*. If moreover lim (1 &.a, (t; t,, g (to)) II = 
0, t-+ 3c, then the motion g = 0 is asymptotically Lyapunov-stable. 

In view of the structure of the fundamental matrix of solutions G(t) for system (2.1) 
and thanks to (4.2), we obtain 

Lemma 4. A motion 8 = 0 of system (3.2) is asymptotically Lyapunov-stable if and only 
if all the roots of the equation 

I (III G(T) - III G(O)l/T - oE,+N 1 I=0 (4.3) 

have negative real parts. 

5. A criterion for the partial stability of linear systems with periodic 
analytic coefficients. 

Theorem 1. A necessary and sufficient condition for asymptotic stability with respect 

to Yl7 . * -9 Ym of the unperturbed solution y = 0,s = 0 of system (2.1) is that the motion 

t=o of system (3.2) by asymptotically Lyapunov-stable, i.e., all the roots of Eq.(4.3) 
have negative real parts. 

Proof. The structure of the fundamental matrix of solutions x (t) Of system (2.1) is 
such that asymptotic stability with respect to y,, . . . . y, of the motion y = 0, s =O of the 
system is precisely exponential. asymptotic stability. Direct integration of the first m 
equations of system (2.1) will show that a necessary condition for the latter is that, on 
trajectories of system (2.1), 

where ai, pi are positive constants. Therefore, to establish asymptotic stability relative 

to .!/l>...,Ynz of the motion y = 0, z = 0 of system (2.1), we must show that it is also 
asymptotically stable with respect to the variables pt (i =1,..., m). 

Consider those of the variables'pf (i = 1,. . ., m) that are linearly independent for 

tE 10, TI\M (suppose these are or, . . ., pm,, m, < m) and put g = (yl,..., ymrpl..., pm,). Then 
there are two possibilities: (1) an auxiliary system of type (3.2) can be constructed; (2) 
construction of the auxiliary system for this specific set of variables in the vector F; is 
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impossible. Now, in case (1) the unperturbed motion y = 0, z = 0 of system (2.1) will be 

asymptotically stable with respect to vi, p,(i = 1, . . ..m. j = 1, . . ..m.) if and only if the 

motion E = 0 of system (3.2) is asymptotically Lyapunov-stable; hence, in that case, the 

proof that asymptotic Lyapunov-stability of 5 = 0 is indeed necessary is complete. Since 

the reduction to a system of type (3.2) is in the final analysis always possible,byintroduc- 

ing supplementary variables in the vector E, it follows again, as in case (l), that the 

necessity of asymptotic Lyapunov-stability of the motion g=0 is proved. By Lemma 4, the 
motion g = 0 of system (3.2) is asymptotically Lyapunov-stable if and only if all roots of 

Eq.(4.3) have negative real parts; hence the necessity part of the proof is complete. The 

sufficiency is obvious. 

Corollary 1. A necessary and sufficient condition for (non-asymptotic) stability with 

respect to yi, . . . . ym of the unperturbed solution y=o,z=o of system (2.1) is that the 

motion g = 0 of system (3.2) be Lyapunov-stable, i.e., all roots of Eq.(4.3) either have 

negative real parts, are zero or pure imaginary, and in the latter two cases the elementary 

divisors corresponding to multiple roots are simple. 

Remarks. lo. Since our stability criteria are inequalities involving the roots of Eq. 

(4.3), these roots may be determined using numerical and approximate methods for determining 

the fundamental matrices G(O), G(T) of solutions of the auxiliary system (3.2). Thus, the 
problem of investigating partial stability in an infinite time interval 10, 3;) reduces to 

numerical integration in a finite interval IO, Tl. 
Z". Suppose that condition (2.2) holds and the matrix Gs_l, for all tE[O,zm) may be 

expressed as 

G $-I = Igtji, gij = gjgigii* (i = 1, . . ., l?Z + IV, j = i, a . ., p) 
where gj, gij* are analytic T-periodic functions of #E[O, ZU) such that rank G;_l = rank G,* = ‘Vv, 

G,* = G" + DrG*_ a-1 8 1' G* g_1 = {gij*), 2 d s < P + 1, t E l0, Tl. Then, by transforming system (2.1) to new 

variables 

Pi = $ gij* (92, (i = 1,. ., X) 
j,l 

one can construct an auxiliary linear system of type (3.2) with analytic T-periodic coefficients. 

Example . Consider the following instance of system (2.1): 

y,' = --yl + sin 2tz, + 2 COS* tza (5.4) 

21’ = --co?3 ty1 - z1 + z,, z2’ = sin tyl - z1 - z2 

The auxiliary linear system (3.2) is then 

Yl’ = -Y, + CL13 p1’ = (k-1 - tg t) p1 (5.2) 

(pl = sin 2tz, + 2 cd tz,)l 

Integrating system (5.2), we determine its solutions 

yl (t) = ([Yl (to) - t&P1 (to)1 + pL1 (to) sin t / cos to} e-+t*) 

p1 (t) = [PI (to) cos t/ cos to] e-(t-*J, t > t, > 0 

Since the characteristic exponents ol= oI= -i of system (5.2) have negative real parts. 

the unperturbed motion yl=zl’~=o of system (5.1) is asymptotically y,-stable (Theorem 1). 

Introducing the new variable p'n = sin tz, + cos tz, , we can also consider the system 

y1' = -y, + zcos tpn, pn' = -_cLo (5.3) 

which has analytic coefficients. Systems (5.2) and (5.3) have the same characteristic ex- 

ponents. 

6. Partial 
turbed motion be 

stability in the linear approximation, Let the equations of per- 

Yi’ = kFJ, uikYk!+ jl bllzl + yi Ct7 Y? z, (6.1) 

zj’= $djlz,+Zj(t,y,z) (i-1 ,_...,m;j=l,..., p) 
1=1 

Here aikl h, 41 are constants, Yi, Zj non-linear terms. We assume that the right-hand 

sides of system (6.1) are continuous in the domain 

.? 2 0, II y II< H, Ilsll< = (6.2) 



and satisfy the uniqueness 
continuable /2j. 

Express the functions 

conditions there, and that the solutions of system (6.1.) ars? Z- 

Yi (i =- 1, . f I, EL) as 

,v 
(6.3) 

where Yj’, Fij" are functions defined by 

Y-."(zf-z i @G'(z) I ’ 0 3 i:*,.(z)= 2 ~@j) i I, u z ) (6.4) 
w=e *=I 

in which u,(i), FiuGj) are homogeneous forms in the variables 21, * * *I ZJ?’ of degrees 1 (I< r) 
and U (V G s), respectively, where r,s are finite numbers. The functions Yj* (Y) are 
analytic in the domain IIyII< H, and Y,*(O)=O. 

The essential purpose of the expansions (6.3) and (6.4) is to extract from Y* (i = 1, . . ., 
m) those terms YlO, P,10 (i = 1, . . ., nz; j = 1, . _ .,N) which will be used as supplementaryvariables 
to form the auxiliary linear system, while the remaining terms Yi** (i = I,___,=) will be 
estimated (from the standpoint of stability relative to ZJ~,...,Y~) in terms of Yi, Yi@, 
Y,y(i = 1, . .., m; j = 1,. ..,N). Such expansions of the functions Yi (i = 1, . . ..m) are not 
unique, as one can include in Yi", Fij" various sets of terms of the indicated type; this 
arbitrary element should be exploited in order to rationalize the search for the most accept- 
able solution. 

As a first-approximation system for (6.1) we take the equations 

(6.5) 

(ti.7) 

(6.X) 

(i= I.. . .,m; j--l,. ..p) 

We shall show that, when investigating stability relative to &, . . . . Ym oftheunperturbed 
motion y = 0, z = 0 of system (6.11, one can apply non-linear transformations to replace 
system (6.5) by a specially constructed linear system. Indeed, define new variables by 

t't ('1 Z&$; + Yi"(%&,biiii t_ &U)(z) (G.(i) 

&'=Fil"(z)= i Li$"(z) (i.j-: 1, . . .,m) 
t)=l 

When this is done, there are two possibilities. 

Case 1. System (6.5) becomes (we assume without loss of generality that N = m) 

g_.= 5 a. 
r ,<_;I Ik 

gr _+_ #' * yIj, Pj*(Y)Pij' 

I_pzzz ,&!?*(q= lgI LI:'pl" -I- 1211,t:f~Pi:) 

&a= i [p'* 
"=I 

(z) = zgI L:dlpl" + ( ;=, L:2e'kplf' 

z,'= !$ &i-l (i,j,y,R=I...., m; e=l,...,p) 

where u , v ucj)* Li’Ye)* are homogeneous forms in zlr . . .,zp of order u; 1;,! ,, ,ie, (11 p pm, p> yae are 

constants. The behaviour af the variables describing the state of system (6.7) is completely 
determined by the behaviour of the variables y,, . . ..y. of system (6.5). 

Case 2. Let us a*sume that all the equalities in the second and third groups of Eqs. 
(6.7) fail to hold. Then we again define new variables 

$'= i: u?'*(z), 
“=a 

1($= J+ &'"'*(z) (j, y,B= 1, . . .,m) 
I==1 

Associating with the new variables vectors that characterize them (see /6/), one can 
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show that, by continuing if necessary to introduce new variables, one can always transform 

from system (6.5) to a finite-dimensional system of type (6.7). 

In the course of this transformation, the original system (6.1) is reduced to the form 

(6.7), (6.8), with the right-hand sides of the equations augmented by the addition of the 

respective terms 

Y :* (t, Y, z), zl” (t, y, z) = jl (ap::“jaz,) 2, 

zlc~~Y~z,=~~l(ar~!az,)z,,z,(t.y,z) (i,j,y,B=l,..., m) 

(6.9) 

In the general case, when construction of a system of type (6.7) is possible at some 
finite stage of the procedure, system (6.1) is transformed into a system of type (6.7), (6.8) 

with added terms (6.9); the linear part of this system (excluding the last group of equations) 

forms a closed linear steady-state system with respect to Yi(i = I,...,m) and the additional 

terms form the auxiliary linear steady-state system. 

When investigating asymptotic stability with respect to Y,...,Y, of the unperturbed 

motion y = 0, z = 0 of system (6-l), the above transformation from the non-linear system 
(6.5) to a system of type (6.7) enables one to replace the linear-approximation equations 

Yi'=kjlaikYk + B biiZ17 

P 

I=1 
Zj'= 2 dj[Zi 

1=1 

(iI= 1 ,...,m; j=l,...,p) 

with a specially constructed linear-approximation system - the linear part of system (6.7), 
which is equivalent (in the context of stability relative to Yl, . . ‘, Yin) to the non-linear 
approximation (6.5) of the initial non-linear system (6.1). When this is done, the linear- 
approximation equations for system (6.1) include part of its non-linear terms and permits a 

simpler derivation of the necessary estimates for the remaining group of non-linear terms. 

This approach enables us to enlarge the class of non-linear systems for which the problem of 

partial stability is solvable by a linear approximation /9, lo/. 

Let Et (i = 1, . . ., m2 + 2m) denote the components ofthe vector 6 consisting of the 

variables yi, #I), h&A) (i, j, v, 6 = I, . . ., m) that determine the state of system (6.7), and 

Y,i (i = 1, . . ., m2 + 2m) the components of the vector-function Ye consisting of the functions 

Yi**, Z,(l), Z#) (i, j, y, 0 = 1, . . ., m). 

Assume that in the domain t> 0, 116 II< H, II rll < m one has the condition 

I Y* (C Y7 4 ! < a II 6 II (6.10) 

where a, H are sufficiently small positive constants. 

Theorem 2. Let all the roots of the characteristic equation of the linear part of 

system (6.7) have negative real parts. Then the unperturbed motion y =o,z =o of system 

(6.1) is asymptotically stable with respect to Y,,..., Y, of its non-linear terms satisfy 

condition (6.10). 

Proof. Under the assumptions of the theorem, with the notation introduced above for the 

linear part of system (6.7), one can find a function V = V(E) satisfying the conditions of 

Lyapunov's Theorem: 

(6.11) 

where Vc,.,) is the derivative of V along trajectories of the linear part of system (6.71, 

c1 (I = 1,2,3) are positive constants. Now, differentiating V along trajectories of system 

(6.1): 

and taking into account that, by (6.10), (6.11), Y,.*(O) = O(y = 1, . . ..m) in the domain 

t > 0, II E II < H, II z II < Q) we obtain an estimate V~I-;ti.l)<-c311g((e + ~IIEl12, where !3 is a 
sufficiently small constant. Hence there exists a number c > 0 such that V(6.1) < c II 5 II 2. 
Thus the function V satisfies the conditions of the theorem on partial asymptotic stability 

/2/ and the unperturbed motion y= 0,z = 0 of system (6.1) is asymptotically j-stable. 

Since Ej = yi (i = 1, . . ., m), this completes the proof. 

Example . Consider the following system (6.1): 



where Yl**, %, are analytic functions in the domain (6.2) with continuous bounded coefficients. 

Among the roots of the characteristic equation of the linear part of system (6.12), there 

are some with positive real parts, and so the motion Y,= z,= z2= 0 of the system is Lyapunov- 
unstable. Let us see what happens with regard to asymptotic y,-stability. Taking equations 
of type (6.5) to be the first-approximation system and defining new variables III == Z&, fLz = Qz3, 
we construct the system 

Assume that in the domain t>U, ly, I<H, lipIj<N, ilzll< w the following conditions hold 

(Y,= (Y,**, Z,, Z&S) and the summation over j is from 1 to 3): 

I y, (13 YI, 21. 22, “3)l<%IY~l+~~jIC1jl (6.14) 

where a,(~= 0, . . . . 3) are sufficiently small positive constants. Since all the roots of the 

characteristic equation of the linear part of the first four equations in (6.13) have negative 

real parts. It follows by Theorem 2 that, provided condition (6.14) holds, the motion Yl = 
z1 = z2 = ZQ = 0 of system (6.12) is asymptotically Y1 -stable. 

7. Additional possibilities for investigating partial stability in the 
linear approximation. We now consider a more general choice of new variables in the 

construction of the auxiliary linear-approximation system for system (6.lj. Express Yj (i = 
1 , . f ., m) in the following form (throughout this section, the ranges of summation are: with 

respect to V - from 2 to T, with respect to k - from 1 to m,and with respect to 1 - from 

1 to p): 

Yi(t,y,Z)=Y~“(y,Z)+Y7*(t,y,Z), Y[“=ZU~‘(g*Z) (7.1) 

where u$' are homogeneous forms of finite degree y in V,Z and define new variables by 

~Li=z:bilZ1+rU;)(y,Z) (i=l,...,m) (7.2) 

When this is done, there are two possibilities. In the first case, system (6.1) becomes 

Yi'=Xailyl, + Pj + Y:*(C y. 2) (7.3) 

pj’ = Zbj~*Zl + IX:‘* (y. 2) + Zj* (t. y, Z) = ZPj#k + Zj* (t, Y3 2) 

Z8 * = Zd,,z, + 2, (t, y, 2) 

zj* = z @YjO/@/,)Y, I_ z (BY,“lazr)Z~ 

(i, j = 1, . ., m; s = 1, ., p) 

where bjl*, ejk are constants and ,, Ql'* are homogeneous forms in y,z of order y. One can 

then extract from (7.3) a linear steady-state system 

Y,' = CaikY, + pi9 Pj’ = Zejkth (7.4) 
(i, j = 1, . . .> m) 

which will serve as a linear approximation for the first two groups of equations in (7.3). 
In the second case, when introduction of the new variables (7.2) does not produce a 

system of type (7.3), one can show that, by again defining new variables and continuing the 

procedure if necessary, system (6.1) may always be transformed to a system with a structure 

of (7.3), from which one can extract a linear steady-state system of type (7.4). This con- 
clusion also holds when the second group of equations in the linear part of system (6.1) is 
allowed to contain terms that are linear (with constant coefficients) in y,,..., y,; in that 
case, instead of (7.4), one can extract from (7.3) a linear system 

Yi'=~uiFCYk + P'i? I"j'=2a;*kYk + Zejkkk (i,j = 1 . . . . . fn) (7.5) 

Suppose that all the roots of the characteristic equation of system (7.4) (system (7.5)) 

have negative real parts. Then the unperturbed motion of system (6.1) will be asymptotically 
stable with respect to yr, . . . . y, if its non-linear terms Y, = (YI**, . .( Y?**, z,*, . . . , 

Z,*) satisfy conditions (6.10) in the domain t> O,}lEIl<H,(Izll< x?,g=(y~,...,y,,~,,...,~~,). 
The proof follows the same lines as that of Theorem 2. 
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If estimates of type (6.10) cannot be established, similar estimates may be obtained by 

employing the following devices. 

lo. Express each of the expressions yoi as a sequence of several new variables 

(rather than a single variable pL1) and the variables yr,..., y,. Here, again, one canalways 

form a system with the structure of (7.3), with a linear part in the form of (7.4) or (7.5). 

This extends the range of cases for which estimates of type (6.10) will hold. 

2O. The procedure of defining new variables may be continued by extracting from yi**, 
Zj* (i, j = 1, . . ., m) some set of non-linear terms and taking these to be the new variables 

(until a satisfactory solution is obtained). This again yields a system with the structure 

of (7.3) and increases the possibility of establishing estimates of type (6.10). 

For example, the definition of a new variable ILL= ylazl does not convert the equation 

Yl' = -3y, + Yl% 21' = 2Y, + 21 (7.6) 

to a closed system with respect to yl,pl, since the equation pl'= -5p, I 2y,” + Zy,3z,2 includes 

the term 2y,3z,2, which cannot be expressed (as required) in terms of Yl, Pl. However, by using 
devices lo, 2O one can form the following auxiliary systems: 

1) Yl’ = -3y, + YlYl, lh’ = -2111 f 2Y,Z + PI2 (,h = y14; 

2) Yl’ = -3y1 + Pl. PI’ = -5y, f 2Y,3 + 2tqh. PLZ’ = -2P2 + 

2Y12 + th2 

(PI = Yl% r”a = Y,%) 

In either case, the null solution of the auxiliary system is asymptotically Lyapunov- 

stable; consequently, the motion yl=zl=O of system (7.61, though Lyapunov-unstable, is 
asymptotically y,-stable. 

Remark. This approach to the investigation of y-stability in the linear approximation 

extends the approach proposed in /a/; however, unlike /8/, it is not assumed here that the 

solutions of the original system of differential equations are bounded and a larger class of 

non-linearities is considered. 

Example . Let the equations of perturbed motion, in which the non-linear perturbations 

are assumed to be analytic functions in the domain (6.2) with continuous bounded coefficients, 

be 
y,' = a~, + by,"' (YA)' + yl** (t. ~1, 21) (7.i) 

21’ = CY, + dz, f Z, (h Y,, 21) 

where (1, b, c, d are constants, k, r integers with k&2, r>, 1, k>r. If d>O the motiony, = z1 = 0 

of system (7.7) is Lyapunov-unstable. 

Let us examine this motion for asymptotic yc-stability. To that end, we define a new 

variable 1"l = Y1Zl and form the system 

YI' = ~YX + by,"‘pl'+ yl** (t. Y,, 21) 

PI‘ = (a + d) PI + Z,* 0, ~1, 21) 

21' = CY, + dz, + Z, @, Y,, 21) 
Z,' = cy12 + by:‘-l P”:” + Z,**. Z,** = y,Z, i_ zlYl*’ 

If the following estimate holds in the domain t>,O, 1 ylI<H,‘l p1 I< H, Izll< m (with (Y* = 

WI**, Z1**)) 

I y* @7 Yl? 21) I < a I Yl I + 8 I Y1% I 

where a,b are sufficiently small positive constants, with a<O,ai- d<O and c, b arbitrary, 

then the motion y,= zl= 0 of system (7.7) is asymptotically yl-stable. 

8. Stability in Lyapunov-critical cases. Let the equations of perturbed motion 

(in vector notation) be 

y’ = Ay + Bz + Y (t, y, z), z’ = Cy + Dz + Z (6 y, 2) (8.1) 
(x’=A*x+X(t,x), x=(y,z)) 

where A,B, C,D are constant matrices of the appropriate dimensions, and the non-linear per- 

turbations Y, Z satisfythe following conditions in the domain t>o, I(a<H/ll, 12/: 

Y (t, 0, 0) 55 Y (t, 0, z) = 0, 2 (t, 0, 0) EE 2 (t, 0, z) E 0 (8.2) 

(II Y (k Y, zll +II 2 (h Y, ~N)/ll Y II z 0 as H Y II + II z II - 0 (8.3) 

Consider the more general system 

y’ = Ay + Bz + Y” (z) + Y (t, y, 4 

z’ = Cy + Dz + 2 (t, y, z) 

(8.4) 



where the components Y-i" (i = 1, . . ., III) of the vector-function Y” (z) satisfy the conditions 

listed in Sect.6. 

Theorem 3. Let the motion y = 0,~ = tf of the system 

y' = Ay -I- Rz, z’ = Cy + Dz (8.5) 

be exponentially asymptotically y-stable and Lyapunov-stable. Then the same is true of the 

following motions: 1) y = 0,~ = 0 of system (8.1); 2) y = 0,~ = 0 of system (8.41, 
provided that in addition B is tine zero matrix and the null solution of the system 

y. = Ay 3_ Y” (z), z’ = Dz (8.6) 

is exponentially asymptotically y-stable. 

Proof. This theorem generalizes well-known theorems of /ll, 12/, in the sense that in 

/ll/ B,Cand in /12/ B are assumed to be zero matrices, and in both cases Y"(z) = 0. We shall 

show that systems (8.1) and (8.41 can be modified by the procedures developed in this paper in 

such a way that the proofs of /11, 12/ are applicable. 

1) Transforming the linear part of system (8.1) by the linear change of variables in- 

dicated in /S/, we obtain 

5' = QaA*QsF -I- Y* (t, F, rl) (8.7) 

where & Q6, C1, G are constant matrices (en, Q6 are defined in /4/j, and the motion z = 0, 

11 = 0 of system (8.7) is exponentially asymptotically t-stable and Lyapunov-stable. The 

components of the vector-function y*,z* are either those of Y,Z or linear combinations 

thereof; one can therefore show that system (8.7) satisfies the assumptions of /11, 12/ and 

the solution % = 0, q= 0 of system (8.7) is Lyapunov-stable and exponentially asymptotically 

S-stable. Thus the unperturbed motion of system (8.11 is Lyapunov-stable and exponentially 

asymptotically q-stable. 

2) Using the procedure of Sect.6, one can go over from system (8.6) (we may assume with- 

out loss of generality that the required auxiliary system is obtained in one step of the 

procedure) to a linear steady-state system y' = Ay -t-p, II' = D*p, whose null solution 

p = 0 is exponentially asymptotically stable (relative to all the variables). When thii Ts" 

done the intial system (8.4) becomes 

y’ = Ay + p 7 (Y (t, y, z), ,u’ = D*,u + Y* (t, y, z) 

z’ = Cy -:- Dz + Z (i, y, z) 

Y* = (dY”idz) (Cy + Z), : = (ya .u) 

(8.8) 

and the solution E = 0, z = 0 of the linear-approximation system for (8.8) is Lyapunov- 

stable and exponentially g-stable. Since 

II Y* II G II c II II dY"i& II II Y II -+- II aye/f% II II z II 

it followsfrom (8.3) that, as /lyll+((z(j-+O, 

(II Y it* 9* z)ll + II Y* (& Yr z)ll -f- II 2 (t, St z)ilMl E II =: 0 

and, in addition, by (8.21, Y* (t,O,z)= 0. Hence system (8.8) satisfies the conditions cf 

/&lf/ and its motion g = 0, z = 0 is Lyapunov-stable and exponentially asymptotically 

e. Thus the unperturbed motion y = 0, z =O of system (8.4) is Lyapunov-stable and 
exponentially asymptotically y-stable. 

Remark. the important point in Theorem 3 is not only the exponential y-stability of the 

motion y==o,z=lJ of systems (8.5) and (8.6), but also the form of the variables com- 

prising systems (8.7) and (8.81, respectively. In this case, for example, conditions (6.2) 
in the first part of the theorem may be replaced by the weaker conditions y* (t. 0, Q) = 0, z* (t, 
a, 11) E 0. 

9. Partial stability under large initial perturbations, Consider the follow- 
ing system of differential equations of perturbed motion 

x' = x (t, x), x = (y, 2) (9.1) 

where the right-hand sides satisfy the general conditions of j2/. 
It is shown in /13, 14,' (see also /Z/1 that if there exists a function V for system (9.1) 

such that 

a (II y Il)~sl; v (f. J, ~1 < b (II Y II), v (t. 0, 0) = 0, J” < 0 w‘) 
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(a(r), b (4 are continuous, monotonically increasing functions of r~ IO,Hl, a(O) = b(0) = O), 
then the motion x = 0 has the following property: for any ~,l,>o there exists 6 (s) > 0 

such that, if II y. II < 6, II z,li< '1 6, then II Y it; to, xJI -C 8 for all t > to. 

In applied problems, the condition II 20 II < CQ may be replaced by IIz,ll< A, where A > 0 

is a given number. 

Definition 2. Let A>0 be a given number. The motion x=0 of system (9.1) is said 
to be y-stable for large z0 if, for any E,to > 0, there exists s(e)> 0 such that, if 

II YOII < 6, II 20 II < A, then 11 y (t; t,, x0)11 < E for all t > to. 
We shall show that investigation of y-stability for large z,, can be conducted with 

weaker conditions imposed on the Lyapunov function than in /13, 14/. 

Theorem 4. Suppose there exists a function V for system (9.1) such that 

a (II y II) -< V (4 Y, 2) < b (II x II) 
v (t, 0, 0) 5s v (t, 0, 2) = 0, ‘v’ < 0 

then the motion x = 0 is y-stable for large z,,. 

(9.3) 

Proof. In the domain t>O, Ilxll<L = const< 30, the function v is bounded: V<b 
'(11 XII). 'Therefore, for any e>O, to > 0, since V (t,O,O)- V (t,O,z)= 0, there exists 6 (E)> 

0 such that, if IIyoII<S, IIz,,ll< A, then for all to >O one has V(t,,x,)< a(e). For any 
solution x(t) = x(t; to, x0) with Ilyo/I < 6, II zoll< A, we see that, since V'< 0 (see /2/) 

a (11 Y (t; to, %)I\) < v (6 X k to, Xo)) < I,’ (to, Xo) <a (E), t>&, 

whence, using the properties of the function a(r), we conclude that II Y 0; &I; %)I(< 6, t > &I. 
This completes the proof. 

Remarks. lo. Conditions (9.3) are weaker than (9.2); at the same time, Y-stability for 
large z0 is, practically speaking, equivalent to y-stability in the large relative to z0 as 
defined in /13, 14/. 

2O. The results of /13, 14/ and Theorem 4 are extensions of a theorem of Rumyantsev /l/ 
on y-stability. 

Example. Following the analysis of /15, 16/, we consider the motion of a point of unit 
mass in a constant gravitational field on the surface sl=0.5s,e(1+ zs*) in a coordinate frame 

Owl%% with OS, pointing vertically upwards. The kinetic energy T and potential energy II 
are 

T = 'lz [.x3 '* + zz.2 + IaS b+' (1 + zp) + %?'29 %!I*) 
II = '/2gz,* (1 + Q), g = coast > 0 

If y = (%, 51'. 58'), z= z8, then the function "=Ti_II satisfies conditions (9.3), and so 
by Theorem 4, the equilibrium position zi= zi'=O, (i= 1, 2, 3) of the point is y-stable for 
large zO. At the same time, the condition " < b (II rll) is not satisfied for this function V 
and the results of /13, 14/ are not applicable. 
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A THEORY OF LINEAR NON-CONSERVATrVE SYSTE!%* 

A.A. ZEVIN 

Linear systems with non-conservative positional forces are considered. It 

is proved that Rayleigh's theorem on the behaviour of the natural 

frequencies of conservative systems when the rigidityandinertia are 

varied cannot be generalized to such systems, A necessary and sufficient 

condition is established under which unstable non-conservative systems 

can be stabilized by dissipative forces of a special type. 

It is shown that in the case of forced harmonic oscillations at 

frequencies lying beyond the spectrum of the corresponding conservative 

system, the application of non-conservative forces diminishes the absolute 
value of the action functional. Least upper bounds are obtained for the 

amplitudes of the forced oscillations, independent of the non-conservative 

forces. 

1. The free oscillations of a system with non-conservative positional forces are 
described by the equation 

where x is the vector of generalized coordinates, M and C are the symmetric inertia and 

elasticity matrices and K is the skew-symmetrid matrix of non-conservative forces. 

By Rayleigh's Theorem /l/, the frequencies of the natural oscillations of the correspond- 

ing conservative system (K = 0) increase (do not decrease) as the rigidity increases and 

as the inertia of the system decreases. Zhuravlev has generalized this theorem to systems 

with gyroscopic forces /2/. He has suggested the following problem: is the dIlT.%lOgOUS 

propostion true for system (1.1) when the non-conservative forces are sufficiently small? 
Below we shall answer this question in the negative. 

me may assume without loss of generality that &f = E is the unit matrix. Let hi be 
a simple real eiyenvalue of A, at a corresponding eigenvector and bt an eigenvector of the 
transposed matrix AT corresponding to hf. In general, the vectors at and bc are linearly 
independent; we shall assume henceforth that this is indeed the case. Since (al, W + 0 
(where the parentheses denote the scalar product) /3/, we may assume that (aj,b,)= 1. 

Put C(e) = Co -i- sC1 in (l.l), where C, is a symmetric positive definite matrix. Let 
us investigate the behaviour of hi (e) as e increased. We shall show that, unlike the 
conservative case, Ai (8) is a decreasing function of E when C, is suitably chosen. 

As we know, 

6; = c& (EWE 18+ = ial, C,bt) (W 

Putting ai = CI + df, bf = ~1 - dl and using the symmetry of C,, we obtain 
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